Tag Archives: meteoroids

Solar system might be older than we thought…

Researchers from Arizona State University have found the oldest solar system object ever discovered. In fact, it’s so old that it formed up to two million years before the solar system did, according to current estimates. It might be time for a rethink of when and how our little place in the Universe came into existence…

Planets and dwarf planets in the solar system. Sizes to scale, distances (obviously) not. Image: NASA

Coming up with a successful model for the formation of the solar system is not an easy task. Such a model must explain everything we know about the solar system today, from the fact that all the planets revolve the same way around the Sun and in the same plane, to the composition of the planets themselves.

The most generally accepted model is the Solar Nebula Disk Model (SNDM), which is a modern variant of the Nebular Hypothesis originally put forward by Laplace and Swedenborg in the 16th Century. In the SNDM, stars form in huge rotating clouds of molecular hydrogen. Our own Sun started out its life as a proto-star in one of these clouds, and formed when a small part of the cloud underwent gravitational collapse. Most of the collapsing mass went into the formation of the proto-Sun, with the rest making the protoplanetary disk that surrounded it. Next came planetesimals, which are believed to be the starting point of planets. It is thought that they grow when bits of material in the disk stick together after collisions, and once they reach a certain size, around a kilometer across, gravity takes over and they attract more and more mass. Not all planetesimals become fully-fledged planets; only the largest are able to survive long enough to make it.

When our solar system was evolving, the planetesimals that didn’t get swept up to form planets likely became asteroids instead. It is these asteroids that large meteorites found on earth are believed to originate from. Because they were created at the birth of the solar system, meteorites can give us some clues about its formation and age.

Artists impression of a protoplanetary disk. Image: NASA

Audrey Bouvier and colleague Meenakshi Wadhwa looked at something known as the calcium-aluminium rich inclusions (CAIs) in a meteorite found in the Sahara desert. The CAIs range in size from a few centimeters down to sub-millimeter lengths, and are believed to have formed in the protoplanetary disk as the solar system was beginning to take shape.

Several different radioactive decays can be investigated to determine how old a piece of rock is. The half-life of the each decay is the key to finding out the rock’s age. Researchers can look at how much of an isotope is present in the sample and compare it with how much there is of whatever it decays into, and then use the decay’s half-life to find the age of the sample. By looking at several different decays and combining the age estimates found for each it’s possible to get an even more precise estimate.

Bouvier and Wadhwa did this for the CAIs in their meteorite and found that it was 4,568.2 million years old. That’s between 0.3 and 1.9 million years older than previous research suggests the solar system is.

During their research, Bouvier and Wadhwa also learnt about how the solar system started. By comparing the time of formation of the CAIs with the time of formation of small, round grains of rock known as chondrules, they were able to determine the concentration of an isotope of iron, Fe-60, at the beginning of the solar system. Pushing back the formation of the solar system means that the concentration of Fe-60 at its beginning was twice as much as estimated using previous knowledge. Fe-60 is only made in the end stages of a star’s life, and is then scattered into space when the star dies. The high concentration found makes it very likely that the source of the Fe-60 was the death of a nearby star: our solar system evolved out of the remnants of a supernova.

Audrey Bouvier, & Meenakshi Wadhwa (2010). The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion Nature Geoscience : 10.1038/ngeo941

1 Comment

Filed under Geoscience, Physics

Look up and see the stars tonight…

Tomorrow morning, I’ll be heading away from the bright lights of London towards the not-so-bright lights of my home town in the North West of England. By complete chance, my trip away from the city coincides with a yearly event that requires a clear sky and as little light pollution as possible to be fully appreciated. Other than finding the right conditions, all you need to do to witness this event is look up.

A Perseid meteor from 8th August this year. Image: Tamas Ladanyi

The Perseid meteor shower was first observed two thousand years ago, and is visible every year from around the middle July to the end of August. At the peak of the shower, there should be 60 or so shooting stars every hour – meaning anyone looking to the sky can expect to see around one a minute, depending on location and a few other factors that can affect visibility. This year, the peak of the shower is tonight at around 0100 GMT.

The meteor shower originates from the comet Swift-Tuttle, which was discovered in 1862 and has a solid nucleus that’s nearly 17 miles across. Unusually, the comet is locked into an orbital resonance with Jupiter, meaning that for every 11 times Jupiter completes an orbit of the Sun, Swift-Tuttle will go round only once. It was last seen in 1992, but we see its debris every year in the form of the Perseids.

Small particles in the comet’s tail spread out along its whole orbit, forming something known as a meteoroid* stream. When the Earth passes through this stream we get a meteor shower. As the particles enter the atmosphere, they travel extremely fast (around 20km/s) causing the air in front of them to compress. The compressed air heats up, and both it and the meteor can reach temperatures of just over 1500C. At temperatures this high, the meteor doesn’t last long – it burns up in the atmosphere creating shooting stars that we can see. Technically, the fast streak of light we see is called the meteor’s trail, and the remnant after the trail has passed is known as the train.

All of the meteors in a shower appear to come from the same point in the sky, a spot called the radiant. This happens because all the meteors are travelling parallel to each other (the same effect causes train tracks to appear to converge in the distance). The meteors in the Perseid shower all appear to be coming from the direction of the constellation Perseus, and this is how the shower got its name.

The best time to see the Perseids, and all other meteor showers, is in the last few hours before the Sun comes up in the morning. As the Earth rotates, the side turning towards the Sun is able to catch more meteoroids, upping the number of meteors in the sky.

This year astronomers are expecting a more spectacular light show than usual. The peak of the shower is coming only two days after a new moon, so there will only be a little moonlight around to spoil the view. Even in urban areas the number of meteors visible per hour could reach between 10 and 20.

Wherever you are, don’t forget to look up.


* Before entering our atmosphere, the particles are known as meteoroids. When they’re travelling through the atmosphere they are meteors, and if one managed to make it to the ground intact it would be called a meteorite (a Perseid meteor is very unlikely to reach Earth, as the biggest ones are only around the size of a pea).


For details on how best to see the Perseids where you are, take a look here and here.

Post title stolen from Patrick Wolf.

Leave a comment

Filed under Physics